
DOCUMENT RESUME

ED 391 482 IR 017 635

AUTHOR Jones, Marshall G.
TITLE Anthropomorphizing the User Interface: A Case for

Interface Guides.
PUB DATE [95]

NOTE 9p.; In: Eyes on the Future: Converging Images,
Ideas, and Instruction. Selected Readings from the
Annual Conference of the International Visual
Literacy Association (27th, Chicago, IL, October
18-22, 1995); see IR 017 629. Contains figures which
may not reproduce clearly.

PUB TYPE Speeches/Conference Papers (150) Viewpoints
(Opinion/Position Papers, Essays, etc.) (120)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Interfaces; *Computer Literacy; *Computer

Software Development; Instructional Effectiveness;
Multimedia Materials; User Needs (Information);
*Visual Aids

IDENTIFIERS *Anthropomorphism Beginning Competence; Clip Art;
Iconic Representation; *Navigation (Information
Systems)

ABSTRACT

Anthropomorphism can be defined as the attribution of
human characteristics or behavior to inanimate objects. People give
names to their automobiles and computers as a way to relate to
complicated pieces of technology that they use regularly, but do not
fully understand. Software designers may claim that their interfaces
are intuitive, but in fact, software is too contrived to be
intuitive. If navigating the program seems easier it is largely
because the user has become more accustomed to programs of that type.
Users have difficulty arriving at that point, however, without some
built-in help, lika interface guides. Interface guides, or agents,
are navigational devices in the user interface which take action on
behalf of the user. Some agents have been named and anthropomorphized
into figures like a butler, a miner, or a wizard, and they can set
forth the user's schedule, guide him through a program or online
information resource, and offer feedback and encouragement. Interface
guides can personalize and customize the interface, add structure to
the software by organizing content around a specific guide, and
integrate motivation and navigation. With video clips and snippets of
audio, they do require a lot of "zorch," or processing power, as well
as a lot of disk space, but many users already have both of these
things in abundance. The major problems lie in the fact that more
research on their effectiveness is needed and in the fact that much
of the clip art that some designers depend on is rife with gender and
racial stereotypes. Four reproductions of computer screens illustrate
the discussion. (Contains 13 references.) (BEW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

U S DEPARTMENT OF EDUCATION
Oirce or Ed.cational Rosearcn

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

O This document has been reproduced as
received from the person or organitation
originating it

O Minor changes have been made to
improve reproduction quality

Points of view or opinions stated in this
document do not necessraily represent
official OERI position or policy

Anthropomorphizing
The User Interface:

A Case For Interface Guides

-PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Alice D. Walker

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Marshall G. Jones

Anthropomorphism and Interaction

Anthropomorphism, as defined by The
American Heritage Dictionary, third
edition, is the "attribution of human
motivation, characteristics, or behavior to
inanimate objects, animals, or natural
phenomena." Anthropomorphizing
inanimate objects is something that we do
on a daily basis. People name their cars,
boats, and computers. A colleague of
mine told me that he was having
problems transferring a file to me via the
internet. His comment was, "Calvin (the
name of his computer) must be feeling a
little off today." Our computers are out to
get us; our cars are feeling good.
Everyday we attribute human
characteristics to non-living objects. It is
a technique we use to help our human
selves relate to complicated pieces of
technology that we use regularly, but do
not fully understand.

Computer software has long attempted to
make its complex algorithms accessible to
the user. Software designers and
developers continue to strive to make
their interfaces intuitive. I argue that
software, by its very nature, cannot be
intuitive. It is a contrived environment.
It is not like anything else. For people to

43

be able to intuit what to do next, they
must have a frame of reference to begin
from. While it is certainly true that
because I can use one word processor, I
can use any word processor, it is not
because the new word processor is
inherently intuitive. It is because
somewhere in my past, I learned to use a
word processor. The functions of a word
processor were taught to me, either by
someone else, or by a manual or other
piece of instruction. I can intuit what
needs to be done only because I have a
frame of reference based in my
experience with using application
software, in this case, a word processor.
Educational software is even more
problematic.

In educational software, people have the
luxury of repeated use. While my word
processor may offer thousands of
functions, I may only use one hundred of
them on a regular basis. When faced
with a complex task, I can work through
the problem because I have experience in
using the word processor. Once again,
through the frame of reference of my
experience, I can learn new functions,
and perform more complex tasks because
of my repeated, daily use, of my word
processor. In educational software,

BEST COPY AVAILABLE

people do not have the luxury of repeated
use. In many cases, we expect our
software to be used once, maybe two or
three times. Users are in the software to
gain the knowledge and or skills they
need, and then they leave the software
(Jones, 1995). Consequently, they
typically do not develop the skills they
need to perform complex tasks in the
software. The software needs to be
obvious, somedmes painfully so. When
designers and developers watch people
use their software, they are often amazed
that people do not know what to do, or
that they miss important features of the
software. What is obvious to us, because
of our experience in using, designing,
and developing educational software, is
not always obvious to novice users.
Schneiderman (1987) says that software
needs to have progressive help. Features
should be built in to the software that
make it easy for a novice to understand,
but that shortcuts should be built in to
allow for the development of power
users. This is quite evident in application
software. In nearly every word
processor available today, the user can
give the commands to copy, and paste by
selecting the options from the Edit menu.
However, most people, as they become
more experienced in word processing,
will bypass the menu in favor of the
keyboard equivalent (e.g.
command/control C for copy,
command/control V for paste.) Be it
educational software or application
software, users need tools available to
them to help them begin the often times
complex task of learning to use their
programs.

Microsoft products help soften the blow
of entering sophisticated pieces of
application software by providing us with
Did You Know statements when we open
the software. Computer games provide
us with dramatic representations of real
life to help us understand and interact
with them. The purpose is to take a
complicated activity and make it seem
some how non threatening. Or, to use
the well worn cliché, user friendly.

44

Anthropomorphism in the computer
interface is not only about making our
programs look life like, but it is also
about making us think that our programs
know us. One example of this is the oft
used technique of using a person's name
in a piece of instructional software (Alessi
& Trollip, 1991; Keller & Suzuki, 1988).
When the user starts the program, their
name is entered. As they make progress,
their name is used in dialogue boxes
telling them of their triumphs and
failures, thus attempting to give the user
the impression that the computer knows
them, and is somehow on their side.

Early computer-based instruction (CBI)
was fairly linear. It was hierarchical in
nature, and users found themselves
working through menu items to complete
different sections. Navigation was
simple. You progressed from one screen
to another by pressing the space bar, or
clicking on the right arrow, to continue.
Jumps between ideas, when they were
made, were typically made back to the
main or previous menu, where another
section was selected.

In today's complex multi-media software,
users are faced with a daunting task.
Large learning environments are difficult
to manage. Sophisticated environments
which combine multi-media and hypertext
capabilities provide users with a wealth of
options (Jones, Farquhar, & Surry,
1995). Jonassen, (1988) was one of the
first to recognize that allowing users to
work in an associative manner, i.e.
allowing users to follow their own path
rather than the path set forth by the
designer, could help deepen the level of
processing of the information by the
learner. This is good. But to make those
links, the software must provide for those
links, which means that the designer must
discern them, build them in, and make
access available to them by the learner.
This is hard. And it is not hard just for
the designer. It is hard for the user as
well. Well ordered hierarchical systems
are organized fairly succinctly by the use
of menus. Interactive learning
environments are often difficult to

represent with a traditional menu.
Different methods of navigation are in
place; comparable methods of
organization are not.

Interface Agents and Interface
Guides

Interface guides may be subsumed by a
concept known as Interface Agents
(Laurel, 1990; Laurel, Oren, & Don,
1992). Interface agents are navigational
devices in the user interface which take
action on behalf of the user. They do
something for the user. These have been
demonstrated in commercials by AT&T,
where an intelligent agent, represented as
a happy, tail wagging dog, tells a groggy,
coffee drinking woman what is in store
for her during the day, including his
attempts at trying to get her playoff
tickets.

Apple Computer also theorized about the
possibilities of an interface agent in their
futuristic promotional videotapes (Laurel,
1990). "Phil" is an electronic butler of
sorts who manages the affairs of a college
professor (See Figure 1).

Figure 1
Two representations of "Phil."
The bow tie becomes an
iconographic symbol, making the
graphic recognizable *in either
representation. (From Laurel,
1990, page 365)

Phil brings up maps for the professor,
contacts colleagues who will do guest

lectures, and reminds him of his mother's
birthday. The purpose of the agent is to
manage the complex internal capabilities
of the computer, freeing up the user to do
what the user would rather do. Voice
recognition software allows the user to
work with the computer without being in
front of the computer. But it does more
than that: it makes the computer human
in ways that we can, at the moment, only
imagine, but can still understand. This
concept of the interface agent, like most
literature on user interface design,
focuses on system software and
application software. The question
becomes how can this idea be
extrapolated to become relevant to
educational software?

Interface Guides in Educational
Software

Oren, Saloman, Kreitman, and Don
(1990) attempt to answer this question by
introducing the idea of an interface guide.
Interface guides are navigational and
organizational emissaries that exist within
the educational software. They represent
the best interests of the user. A guide
may become an internal coach for the
user, suggesting direction, providing
feedback, and even encouragement, as
the user works within a large learning
environment.

45

Examples of interface guides in software

Interface guides are probably best
described within the context of one of the
earliest CD-ROM encyclopedias Oren,
Saloman, Kreitman, & Don (1990). A
program was being prototyped that would
serve as an educational database covering
the American history from 1800-1850.
To help users navigate the large amounts
of information contained in the program,
a metaphor of an interface guide was
used. These guides represented people
who would have lived during 1800
1850. Depending on their interest, the
user could select one of the interface
guides, (See Figures 2 &3). Clicking on
the miner guide would return information
in the database relative and relevant to the

pkni

life of a miner. The same would be true
for any of the other guides.

Figure 2
The list of guides from Oren,
Saloman, Kreitman, & Dor (1990)

Guides LCIC
Chum-hiGkat

Mrbv
CMOSspar* ^er si r...4104t
,t 5140 togr4 rts...sexrr".""'"---1

IP.retWN

e.1

Figure 3
Information returned by guide,
Miner

PKOSPEal NG,
1 t

45-4":*. 4.'44 .44 PRO *ft,: IC suei,-, .14

f.'N.q."'kl tfOn ".1!114'$$!;;,.1.!..1;t.S. %fro ,:,f

for emt 1."..trn :tskte.,:ra pte
',',.?fx:7/ t:'4on, *El Ooosiss2r;str.:.4
sii*.i.t6 V(44.N.:40 kKO. leve:Vqk tfaf.:i01

fA?5,:frs. . g3:1 1:1*:trsra..mrtrO.K'i:
tr: t.pf fi.;445. :j11:4

t t
:;)

A 4
ho0 «0

...

IBM's groundbreaking multi-media
extravaganza, The Illuminated Books and
Manuscripts provide another example of
how interface guides may be used. In the
exploration of Tennyson's Ulysses, users
have the option of having the poem, cr
sections of the poem, read to them in
different voices represented by different
actors. From Danny Glover to Rod
Steiger, users have a wide range of
people to help them understand the poem
through the use of dramatic readings (See
Figure 4). These guides, though not

46

explicitly referred to as guides in the
software, provide the user with
pedagogical help rather than navigational
help. It also adds a bit of the human
touch to the program by bringing the
work of a dead poet to life by having it
read by contemporary figures.

Figure 4
Guides used to explicate content
from IBM's Illuminated Books
and Manuscripts.

MN*
Now mom immoase 1,11%$ 11/0001

.4CA

The Theoretical Foundations of
Interface Guides

Keller and Suzuki (1988) begin, however
tacitly, to introduce the notion of interface
guides through the use of motivational
strategies. They suggest that one way to
provide motivation is through the use of
human interest language and graphics. In
describing the wizard in a 1985 program
Carrying, the authors speak of the use of
the person in the program serving as a
surrogate teacher for the users of the
program. Even in the seemingly ancient
graphic display capabilities of the 1985
program, Keller and Suzuki point out that
facial expressions of the wizard change
on right and wrong answers to provide
feedback. But Keller and Suzuki are
victims of time. While they discuss the
wizard, the graphics they are using seem
obviously dated. They are; don't be
fooled. Conceptually they are describing
something that was not yet technically
possible. Today we have the luxury of
morphing software, digitized movies,

BEST COPY AVAILABLE

high resolution display devices, and
monitors capable of displaying millions
of colorsthe very tools we need to
display more sophisticated guides. But
many of the theories suggesting the use
of guides exist in Keller's ARCS model,
and Jonassen's (1988) early discussions
of generative learning environments. The
technology available to us today provides
us with the stc-age space needed to
include digitized video and audio in our
program. Many desktop machines today
have more Random Access Memory
(RAM) than the machines of 10 years ago
had storage space. This provides us with
enormous opportunities. However, we
would be ill advised indeed to go about
this simply because we can. Rather,
guides should be used to provide
navigational, structural, and pedagogical
aid to the user.

Menus in early pieces of
instructional software provided the
navigation and structure that programs
needed. Motivational elements were
often added as an after thought. Users
studied; answered questions, and were
then treated to animations or sounds on
right answers. Interface guides provide
us with the means to provide
organization, navigational help, and
motivation within the software itself.
Keller and Suzuki suggest that it is
preferable to integrate motivational
elements into the software seamlessly.
But the reality was that, at the time of the
writing, that was difficult to do. Jones,
Farquhar, and Surry (1995) tell us that
the interface of the program is a cohesive
whole representing the content in the
program, the visual representation of the
program, and the control of the program.
Interface guides provide us with a
possible means for achieving the end of
motivational strategies integrated into the
navigational and pedagogical structure of
the program.

Issues in the use of interface
guides

Interface guides may provide a means of
maldng the software easier to use. Oren,
Saloman, Kreitman, and Don (1990) state

that the reaction to the use of interface
guides in their program was quite
favorable. There are few programs on
the market which employ interface
guides. Consequently, most of us know
very little about using an interface guide.
The following is a series of issues to
consider when designing and
implementing interface guides.

1. Personalize and customize the
interface.

While we have been told many times
that personalizing the software is a
good thing to do (e.g., Alessi &
Trollip, 1991; Keller & Suzuki,
1988), interface guides offer not only
personalization, but customization as
well. A particular guide may provide
the learner with'exacdy the direction
they need. In the example by Oren,
Saloman, Kreitman, and Don (1990),
the ten guides offered provide a
remarkable amount of flexibility. Not
total flexibility, surely, bu; more than
simply following the menu structure.
Flexibility here refers to the
program's ability to allow users
different representation of the same
content relative to the guide they
select.

2. Add structure to the software
by organizing content around a
specific guide.

47 6

As stated earlier, menus do this as
well. An individual guide can help
users structure the program around
their area of interest. The guides can
also help users manage the
information in the program by serving
as signposts in the program (Jones &
Okey, 1995) Once a guide is
selected, a representation of the guide
may be placed on the screen as a
visual reminder of what the user is
looking at and the perspective on the
content that the particular guide brings
to the program (See Figure 3).

3. Integrate motivation and
navigation.

In many programs, navigation is a
value added feature. After the content
has been designed and developed,
people then consider how their users
should have access to the
information. Using interface guides
would demand that design and
development issues be considered
simultaneously. All information
related or provided by the guides will
have to be created. The system
messages you will provide to users
will need to be scripted. If you are
digitizing your guides, the video will
need to be shot. You will need to
attend to these details as rigorously as
you attend to your content.

4. Zorch.

Because of the tremendous power
available to us in our computers
today, we have the ability to create
more creative, interesting, and
realistic interactions. Saloway,
(1995) tells us that our computers
have more "zorch" thvn they did ten
years ago. Zorch refers to the amount
of processing power a computer has.
In the early days of the
microcomputers, all of the computer's
zorch went to the application itself.
There was not enough power to make
the interface easier to use. Today, we
have the processors to make the
programs not only powerful, but
easier to use. Using part of your
computer's zorch for an interface
guide, or a series of interface guides,
may make the program easier for
users to understand.

5. Uncharted territory.

While Oren, Saloman, Kreitman, and
Don (1990) tell us that reaction to the
use of interface guides is favorable,
we don't know much about their
effectiveness, nor the best way to
implement them. More exploration is
needed in using interface guides.

48

More research is needed in regards to
their effectiveness.

6. System hogs.

If you decide to use digitized video
and audio to make your guides come
alive, then you will have a problem of
space and system resources. A single
10 second video clip with audio can
require 500k to 1 megabyte of storage
space. In a large program where
multiple guides are used, you could
be talking about needing 40 to 80
megabytes of space simply for your
guides. This is a lot of space, no
doubt. However, CD-ROMs provide
us with storage options, and the
simple faci of the matter is that the
gigabyte hard drive is no longer a
fantasy but a reality. While much
space is needed, the fact is that we
may already have it.

7. What do guides look like?

You do not need to rely on video and
audio for your guides. Static
graphics and text messages take up
less space, and may be as useful as
video based guides. However, most
of us, particularly those of us who
develop on shoestring budgets, rely
on clip art. And there are problems
with clip art. Binns and Branch
(1995) report that much of the clip an
that we have available to us is rife
with gender and racial stereotypes.
Care must be taken in choosing your
guides. Whether they are video with
audio, or static graphics with text.
you must decide on what your guides
will look like, what they will say,
and how they will say it. Guides are
intended to be advocates of the user
who exist within the software. An
advocate should be somebody you
can trust and relate to. To have all of
your guides look the same, i.e. being
all Caucasian, all male, all female, or
all African American, may not be best
for your users. Users should have
the freedom to pick the person they
want to represent their best interests

in the software.
Front end analysis needs to be done
in the development of any learning
environment. We are quite familiar
with using front end analysis to
analyze our audiences. A careful
analysis of the audience will help to
determine what a guide should look
like. An analysis of the instructional
environment will tell us what system
resources are available to us, thus
helping us to determine whether the
guides should be digitized video and
audio or static with text.

Conclusion

Interface guides may be a viable option in
the development of the interaction style of
a computer based learning environment.
They can provide personalized and
customized programs for multiple users
of learning environments. By providing
even greater human characteristics to a
piece of software, they can
anthropomorphize the user interface, thus
making the software more relevant to the
users. Large computer based learning
environments, though engaging, can be
harrowing places for a user to be.
Guides can help lead them through the
environment successfully.

References

Alessi, S. & Trollip, S. (1991).
Computer-based instruction:
Methods and development.
Englewood Cliffs, NJ: Prentice-Hall.

Binns, J. C. & Branch, R. C. (1995).
Gender stereotyped computer clip-art
images as an implicit influence in
instructional message design. In D.
G. Beauchamp, R. A. Braden & R.
E. Griffin (Eds.), Imagery and Visual
Literacy. (pp. 315-324). The
International Visual Literacy
Association.

Jones, M. G. (1095). Visuals for
information ao;ess: A new
philosophy for screen and interface
design. In D. G. Beauchamp, R. A.
Braden & R. E. Griffin (Eds.),

Imagery and Visual Literacy. (pp.
264-272). The International Visual
Literacy Association.

Jones, M. G., Farquhar, J. D. & Surry,
D. W. (1995). Using metacognitive
theories to design user interfaces for
Computer-based learning.
Educational Technology 35(4) pp.
12-22.

Jones, M. G. & Okey, J. R. (1995).
Interface design for computer-based
learning environments. This paper
has been published b; Instructional
Technology Research Online (InTRO)
at the WWW site:
[http://129.7.160.78/InTRO.ht
ml] on February 21, 1995.

Jonassen, D. H. (1988). Integrating
learning strategies into courseware to
facilitate deeper processing. In D.
Jonassen (Ed.), Instructional designs
for microcomputer courseware. (pp.
151-181). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Keller, J. M. & Suzuki, K. (1988). Use
of the ARCS motivation model in
courseware design. In D. Jonassen
(Ed.), Instructional designs for
microcomputer courseware. (pp.
401-434). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Laurel, B. (Ed.). (1990). The art of
human-romputer interface design.
Menlo Park, CA: Addison Wesley.

Laurel, B., Oren, T., & Don, A. (1992).
Issues in multimedia design: Media
integraáon and interface agents. In
M. M. Blattner & R. B. Dannenberg
(Eds.), Multimedia interface design.
(pp. 53-64). ACM Press.

Laurel, B. (1990). Interface agents:
Metaphors with character. In B .

Laurel (Ed.), The art of human
computer interface design. (pp. 355-
366). Menlo-Park, CA: Addison
Wesley Publishing Company, Inc.

Oren, T., Saloman, G., Kreitman, K, &
Don, A. (1990). Guides:
Characterizing the user interface. In
B. Laurel (Ed.), The an of human
computer interface design. (pp. 367-
382). Menlo-Park, CA: Addison
Wesley Publishing Company, Inc.

49 b

Saloway, E. (1995). Keynote address at
the annual conference of the
Association for Educational
Communications and Technology.
Anaheim, California. February,
1995.

50

Schneiderman, B. (1987). Designing
the user interface: Strategies for
effective human-computer interaction.
Men16 Park, CA: Addison-Wesley.

